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Abstract—A modified light-fluorous Mukaiyama reagent bearing a C8F17 tag was prepared and examined in ester and amide form-
ing condensation reactions. Following the reactions, the desired product was effectively separated from the fluorous pyridone
by-product using a simple fluorous solid phase extraction.
� 2007 Published by Elsevier Ltd.
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The Mukaiyama condensation reagent (N-methyl-2-
chloropyridinium iodide)1 1 is one of the most useful re-
agents in organic synthesis and there are many reports
of its use for the key ester or amide forming step of
the synthetic route. Since the reagent was reported in
1975, various N-alkyl-2-halopyridinium salts have been
developed, with the aim of achieving higher levels of effi-
ciency.2 Recently, fluorous-tagged 2-chloropyridinium
hexafluorophosphate 2 was reported by Nagashima
et al.3 and shown to successfully promote amide bond
formation (see Fig. 1). A fluorous benzyl group was
used as the fluorous tag, and fluorous solid phase extrac-
tion (FSPE)4 of the reaction mixture cleanly removed
the corresponding fluorous pyridone by-product. In
this protocol, the addition of 1-hydroxybenzotriazole
(HOBT) is required to decrease the formation of the car-
boxylic anhydride by-product, so a resin-bound carbon-
ate scavenger was used to remove excess HOBT.5

Herein, we report a simple procedure for the condensa-
tion reaction using a new light-fluorous6 Mukaiyama
reagent 3, which is more reactive than 2 and easily
removable from the desired product using FSPE.

The light-fluorous Mukaiyama reagent 3 was easily pre-
pared from 2-chloropyridine in a one step as shown in
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Scheme 12d in 72% isolated yield after recrystallisation.7

Elemental analysis as well as the 1H and 19F NMR spec-
tra provide support for the salt structure 3.8 Compound
3 is a white powder that can be stored in the desiccator
without decomposition for over one year. We chose the
triflate as the counterion for the pyridinium salt because
a triflate anion is reportedly a good counter anion for
Mukaiyama-type reagents.2c
C8F17

72% (from AcOEt)
3

Scheme 1. Synthesis of the fluoroalkyl Mukaiyama reagent.
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Figure 2. Comparison of conversion for ester formation in CDCl3.

Table 1. Ester formation using 3 and FSPE

RCO2H

3 (1.2 eq)

Et3N (3 eq)

DMAP (1 eq)

R'OH (1 eq)

CH2Cl2
rt

2) FSP

1) was

Entry Carboxylic acid Alcohol

1

Ph

CO2H
MeOH (10 equiv)

2
Ph

CO2H
OH

3
Ph

CH2CO2H
MeOH (10 equiv)

4
CO2H

Ph
MeOH (10 equiv)

5
CO2H

Ph
OH

6
CO2H

MeO
MeOH (10 equiv)

7

N
H

CO2H

NHBoc

MeOH (10 equiv)

8

N
H

CO2H

NHBoc

Ph

OH

a The amount of fluorous silica gel used was 15 times the weight of 3.
b Isolated yield.
c Determined by HPLC.
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We expected that the fluorous Mukaiyama reagent with
the ethylene spacer, 3, to be more active in the conden-
sation reaction than the ethylene benzyl spacer because
the inductive effect of the fluorous tag should be stron-
ger and because its fluorous tag is not bulky. To test this
hypothesis, we compared the reactivity of the three
Mukaiyama reagents in question 1–3 in an esterification
reaction between 2-phenyl benzoic acid and isopropanol
in CDCl3 as the solvent to allow for 1H NMR monitor-
ing of reaction aliquots. Three separate reactions were
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Figure 3. Comparison of TLC between FSPE conditions and regular
conditions.

RCO2R'
E (80% MeOH)a

hing with aq. HCl

Time (h) Yieldb (%) Purityc (%)

1 Quant. 99.0

1 99 99.1

0.5 Quant. 97.4

1 87 98.9

2 80 92.0

1 94 99.8

1 71 99.0

1 Quant. 98.0
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set up under identical conditions each with a different
Mukaiyama reagent either 1, 2 or 3. At given time points
the % conversion of the reaction was determined by
recording 1H NMR spectra of the reaction mixtures
and calculating the relative integrals of the methine pro-
ton of isopropoxy ester. A plot of % conversion versus
time is shown in Figure 2 with the original Mukaiyama
reagent 1 shown in red, the ethylene spacer version 3
shown in blue, and finally the ethylene benzyl derivative,
2, shown in green. It is clear that fluorous reagent 3 has
a higher reactivity than 2, and almost the same reactivity
as the original Mukaiyama reagent 1 in this particular
ester forming reaction. Interestingly, the solubility of
2, which showed the lowest activity, was the highest
among these reagents.

Synthetically, we envisioned separating the target prod-
uct from fluorous pyridone 4, derived from the Mukai-
yama reagent, via FSPE after the condensation reaction.9

The ability of simple product purification is the most
important feature of the fluorous Mukaiyama reagent.
When the Rf values of both the product and the pyri-
done by-product are similar to each other, it is difficult
to separate these compounds effectively by the usual
chromatography. For example, when acetic acid and
N-methylaniline were used as the substrates with fluor-
Table 2. Amido formation using 3 and FSPE

RCO2H

3 (1.2 eq)

Et3N (3 eq)

DMAP (1 eq)

R'R''NH (1 eq)

CH2Cl2
rt

2) FSPE

1) wash

Entry Carboxylic acid Amine

1
CO2H NH2

OMe

2
CO2H

PhNH2

3
CO2H

MeO
PhNH2

4
CO2H

MeO

NHMe

5
CO2H

O2N
PhNH2

6d
CO2H

O2N

NHMe

7
CO2H

Ph
PhNH2

8

N
H

CO2H
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NH2

OMe

a The amount of fluorous silica gel used was 15 times the weight of 3.
b Isolated yield.
c Determined by HPLC.
d 0.2 equiv of DMAP was used.
ous Mukaiyama reagent 3, the target product could
not be separated effectively from the corresponding pyri-
done 4 by standard column chromatography. The Rf

values (AcOEt/hexane = 1/1) of 4 and product 5 were
0.30, and 0.33, respectively, by regular TLC (Silica gel
60 F254; MERCK) as shown in Figure 3. As a result
complete resolution of adducts 4 and 5 by column chro-
matography was not trivial. On the other hand, there
was a remarkable difference in Rf values between 4
and 5 on fluorous TLC10 (0.11 vs 0.83) when eluting
with 80% MeOH as shown in Figure 3. This significant
difference in Rf enabled facile separation of fluorous
pyridone 4 and amide 5 when the FSPE strategy was
employed.

Table 1 shows the various ester formation reactions
using 3 under mild basic conditions. The procedure of
the condensation reaction was simple and easily carried
out. All reactions proceeded at room temperature and
were complete in under 2 h. Upon completion, the reac-
tion mixture was washed with aq HCl to remove the
TEA and DMAP and then subjected to FSPE eluting
with 80% MeOH to give the target products in good
yields and high purities.11 Similarly, various amide
forming reactions without HOBT were investigated
and the results are shown in Table 2. Although the
RCONR'R''
 (80% MeOH)a

ing with aq. HCl

Time (h) Yieldb (%) Purityc (%)

2 80 99.1

4 Quant. 99.8

2 86 95.1

5 77 98.9

2 76 99.7

2 91 95.8

2 84 99.8

2 84 98.9
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by-products that did not move on TLC were slightly
observed, moderate to good yields and easy purification
were achieved in all cases.

In summary, a new fluorous Mukaiyama reagent 3 was
prepared and it was found that the reactivity was higher
than known fluorous Mukaiyama reagent 2. Further-
more, we demonstrated that 3 is a useful reagent for
condensation reactions when the Rf values of both the
product and the pyridone by-product are similar on
regular TLC. We conclude that a condensation strategy
using reagent 3 and FSPE is one of the most conve-
nient methods for various ester and amide forming
reactions.
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